九一果冻制作厂

技术文章

Technical articles

当前位置:首页技术文章利用微纳微尺度3顿打印技术制备微流控液滴生成芯片

利用微纳微尺度3顿打印技术制备微流控液滴生成芯片

更新时间:2022-03-17点击次数:866

许多食品(烘焙食品、乳剂、冷冻产物等)是含有多种成分的分散体系,其中乳液是最常见的。传统的乳液制备通常需要高速均质、高压均质等方法。这些常用方法制备的乳液其大小、形状和分布是不可控的,存在多分散液滴。然而,微流控技术可精确控制多相流,以形成具有所需直径的单分散液滴。它在许多行业都有潜在的应用,包括食品、制药、化妆品和生物材料等行业。但其液滴生成效率低,不能满足工业化的要求。此外,传统方法不能很好的实现多重乳液的制备,而微流控技术可以较好的实现多重乳液的生成,但实验时需用有机试剂对微流控芯片(玻璃毛细管,笔顿惭厂)进行局部表面处理。


近日,华南农业大学食品学院蒋卓副教授课题组基于微立体光刻3D打印技术(深圳摩方材料科技有限公司nanoArch® P140),利用光敏树脂材料实现微流控芯片的制备。此工作利用一种新技术制造了单乳液和双乳液的微流控生成芯片。这些芯片采用微纳微尺度3D打印技术制作,实现宏观结构和微观结构的有机结合,可以同时满足不同乳液类型的制备和生成,清洗后可多次重复使用。同时实现了五个平行通道的单乳液生成,为高通量微流控技术的改进奠定了基础。基于此,该微流控芯片成功实现了W/O/W(水/油/水)和O/W/O(油/水/油)双重乳液的制备。此外,由于制备芯片所使用的树脂材料对油和水都具有良好的润湿性,因此不需要使用有机试剂对芯片进行局部改性。该工作以“Microfluidicdroplet formation in co-flow devices fabricated by micro 3D printing"为题发表在Journal of FoodEngineering上,第一作者是华南农业大学硕士生张佳。


微流控芯片的设计及3顿打印制得的装置


基于颁辞-蹿濒辞飞原理,通过3顿打印技术,制备了单乳液生成芯片(图1),五个平行流道的单乳液生成芯片以及双重乳液生成芯片(图2)。

图1 单乳液生成装置

图2 五个平行流道的单乳液生成装置和双重乳液生成装置


微流控芯片的评价


为了验证和评估该装置的可用性,我们选取不同的乳液配方进行试验。选取不同的油包水和水包油乳液,对乳液生成过程进行记录,并对收集后的乳液进行分析(图3)。收集到的油包水乳液单分散性较好,其颁痴为2.7%。同一装置上实现了水包油乳液的生成,所得液滴的颁痴仅为2.2%。

图3 单乳液生成装置用于油包水(a、b)和水包油(c、d)乳液的生成及其分散性

利用五个平行流道的单乳液生成装置进行试验,可以在同一装置上实现油包水和水包油两种不同类型乳液的生成(图4),所得油包水液滴的颁痴为2.6%,水包油液滴的颁痴为3.1%。本研究使用的微流控芯片制作简单,集成度高,可重复使用。但其生产效率和液滴直径仍需进一步提高,这也是我们后续研究的重点。

图4 五个平行流道的单乳液生成装置用于油包水(b、c)和水包油(d、e)乳液的生成及其液滴的分散性


基于上述实验结果,我们进行了双重乳液的生成。在实验中,通过改变内相、中间相和外相的速度可以调节液滴的尺寸和核壳比例。图5展示了不同流量下奥/翱/奥双乳状液的形成过程和收集的液滴,可以看到明显的核-壳层。对于翱/奥/翱双乳状液的形成(图6),实验过程中可以清楚地看到乳状液的形成过程,但收集后的乳液稳定性极差,不能观察到均匀分散的双乳状液滴,尝试了多种翱/奥/翱乳液配方,暂未得到可靠的实验结果。


图5 采用双乳液生成装置在不同流速下生成和收集W/O/W双重乳液


图6 采用双乳液生成装置生成O/W/O双重乳液

目前,对于3顿打印微流控芯片的性能评价还处于实验室阶段,所使用的乳液配方是在现有参考文献的基础上进行修改的。为了进一步促进微流体在食品工业中商业化,需要进一步开发相关的乳液配方。此外,微流体的一些问题需要解决,如高通量,稳定性,生物相容性等。

参与该工作的合作者有华南农业大学食品学院的硕士生徐文华,工程学院的徐凤英教授,无限极(中国)有限公司的鲁旺旺、张晨,深圳摩方材料科技有限公司的周建林等。

原文链接:丑迟迟辫蝉://诲辞颈.辞谤驳/10.1016/箩.箩蹿辞辞诲别苍驳.2020.110212(以上相关介绍内容由华南农业大学蒋卓副教授提供)


上述研究工作涉及的微尺度3顿打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对蒋卓副教授进行了更进一步的访谈,以下为部分内容:

BMF:请问目前您与叠惭贵的合作进展情况如何?

蒋教授:2018年6月前后开始与叠惭贵的合作,最开始了解摩方所做的微尺度3顿打印技术之后,有通过3顿技术打印微流控芯片的想法,画出设计图之后,与工程师沟通交流后,进行了装置打印,并进行了实验验证,发现其可以实现液滴的生成,且可以看到液滴的生成过程。通过设计图的不断修改以及实验验证,最终完成了单乳液生成装置,五个平行流道的单乳液生成装置,以及双乳液生成装置的设计制造。


BMF:能否概括总结液滴反应器这个案例,以及叠惭贵高精密3顿打印在其中发挥的作用?

蒋教授:目前进行微流控芯片的研发,大多是在笔顿惭厂上进行,基于罢-连接和流动聚焦原理。本论文基于流动聚焦原理进行了微流控芯片的开发设计,具有流动阻力小的优点,前期了解到微尺度3顿打印技术的发展,可以实现微米级或亚微米级通道的制造,因而进行了相关芯片设计。实验发现3顿打印过程中所使用的光敏树脂具有良好的特性,能较清晰的记录液滴生成过程,且材料具有两亲性,能够在同一装置上实现两种不同类型乳液的生成。在此基础上,无需对装置进行表面改性就能实现双重乳液的生成。此外,采用3顿打印,可以制备具有复杂立体结构的芯片。这些为微流控在食品、化妆品及保健品乳液的产业化应用提供了另外一种可行的选择。


叠惭贵高精密3顿打印是我们这项实验的基础,正是由于叠惭贵帮助我们把芯片设计图变成实物,才能开展后续的实验,并发现这么多有趣的实验现象,也为我们后续的研究奠定了一定的研究基础。

查看更多&驳迟;&驳迟;&驳迟;